
Public

SMART CONTRACT AUDIT REPORT

for

RemixDao (Ewe Technology)

Prepared By: Xiaomi Huang

PeckShield
Aug 4, 2023

1/18 PeckShield Audit Report #: 2023-179

contact@peckshield.com

Public

Document Properties

Client Ewe Protocol
Title Smart Contract Audit Report
Target Ewe
Version 1.0
Author Jing Wang
Auditors Jing Wang, Xuxian Jiang
Reviewed by Jing Wang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 Aug 4, 2023 Jing Wang Final Release
1.0-rc July 28, 2023 Jing Wang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2023-179

Public

Contents

1 Introduction 4
1.1 About Ewe . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Potential Sandwich-Based MEV With Imbalanced Positions 11
3.2 Possible Costly LPs From Improper Strategy Initialization 13
3.3 Trust Issue of Admin Keys . 15

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2023-179

Public

1 | Introduction

Given the opportunity to review the Ewe design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given branch of Ewe protocol can be further improved due to the presence of
several issues related to either security or performance. This document outlines our audit results.

1.1 About Ewe

Ewe is a farming protocol which provides interfaces for users to deposit tokens and earn rewards
from Uniswap V3. Each strategy manages only one pair token and pool fee (correspond to Uniswap

V3 Pool contract). The protocol provides automatically earning and rescaling mechanisms to collect
rewards and rebalance the positions of user funds. The basic information of the audited protocol is
as follows:

Table 1.1: Basic Information of Ewe

Item Description
Name Ewe Protocol
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report Aug 4, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/ewe-technology/pancakeswap-V3-strategy-contract (85bbca3)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

4/18 PeckShield Audit Report #: 2023-179

Public

• https://github.com/ewe-technology/pancakeswap-V3-strategy-contract (51ca86d)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/18 PeckShield Audit Report #: 2023-179

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/18 PeckShield Audit Report #: 2023-179

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2023-179

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2023-179

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Ewe protocol implementation. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 3

Informational 0

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/18 PeckShield Audit Report #: 2023-179

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 3 low-severity vulnerabili-
ties.

Table 2.1: Key Ewe Audit Findings

ID Severity Title Category Status
PVE-001 Low Potential Sandwich-Based MEV With Im-

balanced Positions
Time and State Fixed

PVE-002 Low Possible Costly LPs From Improper Strat-
egy Initialization

Time and State Fixed

PVE-003 Low Trust Issue of Admin Keys Security Features Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/18 PeckShield Audit Report #: 2023-179

Public

3 | Detailed Results

3.1 Potential Sandwich-Based MEV With Imbalanced Positions

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: Multiple contracts

• Category: Time and State [6]

• CWE subcategory: CWE-682 [3]

Description

As mentioned earlier, the protocol supports liquidity by adding single-side tokens and requires the
timely invocation to rebalance current positions. Because of above requirement, there is a constant
need of swapping one asset to another. With that, the protocol has provided several interfaces to
facilitate the asset conversion.

894 f unc t i on swapToken (
895 . . .
896) pub l i c payable o v e r r i d e r e tu rn s (uint256 outputAmount) {
897 . . .
898
899 // get minimum swap out amount
900 uint256 minimumSwapOutAmount = getMinimumSwapOutAmount (
901 . . .
902) ;
903 r equ i r e (minimumSwapOutAmount > 0 , "inputAmount too small") ;
904
905 uint256 pathLength = swapPathArray . l ength ;
906 i f (pathLength == 2) {
907 // statement for "single swap path", swap by exactInputSingle function
908 outputAmount = ISmartRoute r (SMART_ROUTER_ADDRESS) . e x a c t I n p u t S i n g l e (
909 ISmar tRoute r . Exac t I npu tS i ng l ePa rams (
910 . . .
911 minimumSwapOutAmount ,
912 0
913)
914) ;

11/18 PeckShield Audit Report #: 2023-179

Public

915 }
916 . . .
917 }
918
919 f unc t i on getMinimumSwapOutAmount (
920 . . .
921) pub l i c view o v e r r i d e r e tu rn s (uint256 minimumSwapOutAmount) {
922 uint256 estimateSwapOutAmount = getEstimateSwapOutAmount (
923 . . .
924) ;
925 . . .
926 }
927
928 f unc t i on getEstimateSwapOutAmount (
929 . . .
930) pub l i c view re tu rn s (uint256 estimateSwapOutAmount) {
931 . . .
932 (
933 address token0 ,
934 address token1 ,
935 uint256 tokenPr i c eWi th18Dec ima l s // (token1/token0) * 10**

DECIMALS_PRECISION
936) = getTokenExchangeRate (token In , tokenOut) ;
937
938 . .
939 }
940
941 f unc t i on getTokenExchangeRate (
942 . . .
943 {
944 . . .
945 // calculate token price with 18 decimal precision
946 tokenPr i c eWi th18Dec ima l s = Poo lHe lpe r . getTokenPr iceWithDec ima l sByPoo l (
947 poo lAddres s ,
948 ZapConstants . DECIMALS_PRECISION
949) ;
950 . . .
951 }

Listing 3.1: Zap::swapToken()

To elaborate, we show above the swapToken() helper routine. We notice the conversion is routed to
UniswapV3 in order to swap one asset to another. And the swap operation specifies some restrictions on
possible slippage, however, it is based on one spot price, and is therefore vulnerable to be manipulated
and possible front-running attacks, resulting in a smaller gain for this round of conversion.

Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a large
trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-back
of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes a loss
and brings a smaller return as expected to the trading user because the swap rate is lowered by the

12/18 PeckShield Audit Report #: 2023-179

Public

preceding sell. As a mitigation, we may consider specifying the restriction on possible slippage caused
by the trade or referencing the TWAP or time-weighted average price of UniswapV3. Nevertheless, we
need to acknowledge that this is largely inherent to current blockchain infrastructure and there is
still a need to continue the search efforts for an effective defense.

Recommendation Develop an effective slippage control mechanism (e.g., TWAP) against above
sandwich attacks to better protect the interests of protocol users.

Note this is a protocol wise issue and all routines which are related to token swaps share the
same issue.

Status This issue has been fixed in the following commit: 51ca86d.

3.2 Possible Costly LPs From Improper Strategy Initialization

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: Strategy

• Category: Time and State [5]

• CWE subcategory: CWE-362 [2]

Description

As mentioned before, the Ewe protocol provides a platform for users to deposit tokens to a Strategy

and the controller can manage the funds. The depositor will get their pro-rata share based on their
deposited amount. While examining the share calculation with the given deposits, we notice an issue
that may unnecessarily make the share extremely expensive and bring hurdles (or even causes loss)
for later depositors.

To elaborate, we show below the depositLiquidity() routine. This depositLiquidity() routine is
used for participating users to deposit the supported asset (e.g., BNB) and get respective profits in
return. The issue occurs when the Strategy is being initialized under the assumption that the current
Strategy is empty.

139 function depositLiquidity
140 {
141 ...
142 // update userShare & totalUserShare
143 uint256 increasedShare = calculateIncreasedShareAndUpdateUserShare(
144 userAddress ,
145 increasedLiquidity
146);
147 \dots
148 }
149

13/18 PeckShield Audit Report #: 2023-179

https://github.com/ewe-technology/pancakeswap-V3-strategy-contract/51ca86d

Public

150 function calculateIncreasedShareAndUpdateUserShare(
151 address userAddress ,
152 uint128 increasedLiquidity
153) internal returns (uint256 increasedShare) {
154 // update userShare & totalUserShare
155 uint128 totalLiquidity = getNftLiquidityAmount ();
156
157 if (totalUserShare == 0) {
158 increasedShare = totalLiquidity;
159 } else {
160 increasedShare = uint256(increasedLiquidity)
161 .mul(totalUserShare)
162 .div(uint256(totalLiquidity).sub(increasedLiquidity));
163 }
164 require(increasedShare > 0, "deposit amount too small");
165
166 userShare[userAddress] = userShare[userAddress].add(increasedShare);
167 totalUserShare = totalUserShare.add(increasedShare);
168 }
169 }

Listing 3.2: Strategy::depositLiquidity()

Specifically, when the Strategy is being initialized, the share value directly takes the value of
increasedShare = totalLiquidity (line 158), which is manipulatable by the malicious actor. As this
is the first deposit, the current total supply equals the calculated getNftLiquidityAmount()= 1 WEI.
With that, the actor can further deposit a huge amount of asset into the position with the goal of
making the share extremely expensive.

An extremely expensive share can be very inconvenient to use as a small number of 1 Wei may
denote a large value. Furthermore, it can lead to precision issue in truncating the computed vault
tokens for deposited assets. If truncated to be zero, the deposited assets are essentially considered
dust and kept by the vault without returning any valut tokens.

This is a known issue that has been mitigated in popular Uniswap. When providing the initial
liquidity to the contract (i.e. when totalSupply is 0), the liquidity provider must sacrifice 1000 LP
tokens (by sending them to address(0)). By doing so, we can ensure the granularity of the LP tokens
is always at least 1000 and the malicious actor is not the sole holder. This approach may bring an
additional cost for the initial liquidity provider, but this cost is expected to be low and acceptable.

Recommendation Revise current execution logic of share calculation to defensively calculate
the share amount when the vault is being initialized. An alternative solution is to ensure guarded
launch that safeguards the first deposit to avoid being manipulated.

Status This issue has been fixed in the following commit: 51ca86d.

14/18 PeckShield Audit Report #: 2023-179

https://github.com/ewe-technology/pancakeswap-V3-strategy-contract/51ca86d

Public

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: Multiple contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [1]

Description

In the Ewe protocol, there is a privileged account, i.e., owner, that plays a critical role in governing
and regulating the system-wide operations (e.g., configure system parameters). Our analysis shows
that this privileged account needs to be scrutinized. In the following, we use the Zap contract as
an example and show the representative functions potentially affected by the privileges of the owner

account.
Specifically, the privileged functions in Ewe protocol allow the owner to set swap path.

95 function setSwapPath(
96 address inputToken ,
97 address outputToken ,
98 address [] memory newSwapPath
99) public onlyOwner {

100 // parameter verification
101 ...
102 for (uint i = 0; i < pathLength; i++) {
103 ParameterVerificationHelper.verifyNotZeroAddress(newSwapPath[i]);
104 }
105
106 // verify inputToken is not outputToken
107 require(inputToken != outputToken , "inputToken == outputToken");
108
109 // verify input path is valid swap path
110 require(pathLength >= 2, "path too short");
111
112 // verify first token in newSwapPath is inputToken
113 require(newSwapPath [0] == inputToken , "path not start from inputToken");
114
115 // verify last token in newSwapPath is outputToken
116 require(
117 newSwapPath [(pathLength - 1)] == outputToken ,
118 "path not end with outputToken"
119);
120 ...
121 }

Listing 3.3: Example Privileged Operations in the Zap Contract

15/18 PeckShield Audit Report #: 2023-179

Public

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the owner may also be a counter-party risk to the protocol users. It is
worrisome if the privileged owner account is a plain EOA account. Note that a multi-sig account
could greatly alleviate this concern, though it is still far from perfect. Specifically, a better approach
is to eliminate the administration key concern by transferring the role to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed.

16/18 PeckShield Audit Report #: 2023-179

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Ewe protocol, which provides
interfaces for user to deposit tokens and earn rewards from trading and staking from Uniswap V3.
The current code base is well structured and neatly organized. Those identified issues are promptly
confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

17/18 PeckShield Audit Report #: 2023-179

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[3] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[6] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2023-179

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Ewe
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Potential Sandwich-Based MEV With Imbalanced Positions
	Possible Costly LPs From Improper Strategy Initialization
	Trust Issue of Admin Keys

	Conclusion
	References

